バイオメディカルAI研究ユニット
Ja
A major challenge in computer-aided diagnostic (CAD) schemes for lung nodule detection in multi-detector-row CT (MDCT) is to reduce false positives (FPs) while maintaining a high sensitivity level. Our purpose in this study was to develop a three-dimensional (3D) massive-training artificial neural network (MTANN) for reduction of FPs. To process quasi-isotropic voxels in the 3D MDCT volume, we Read more...
We developed computer-aided diagnostic (CAD) scheme for detection of polyps in CT colonography (CTC) and evaluating our CAD scheme with false-negative polyps in a large multicenter clinical trial in collaboration with Don C. Rockey, M.D., the Southwest Medical Center at the University of Texas. A major challenge in CAD schemes for detection of polyps in CTC is the detection of difficultEpolyps Read more...
We developed an automated scheme for segmenting and calculating liver volume in hepatic CT by means of 3D fast-marching and level-set segmentation algorithms. Automatic liver segmentation on hepatic CT images is challenging because the liver often abuts other organs of similar density. Our purpose was to develop an automated liver segmentation scheme based on a 3D level-set algorithm for measur Read more...